Not Quite the Kitchen Sink

MOQC Biannual Meeting
January 2020

Michael A. Smith, PharmD, BCPS
Disclosures

- No relevant financial disclosures
- Panel member for National Comprehensive Cancer Network (NCCN) Adult Cancer Pain Guidelines
Learning Objectives

• Review current cancer pain guidelines
• Discuss cancer pain management with the following agents: buprenorphine, methadone, ketamine, and lidocaine
• Understand limitations and monitoring requirements for the use of buprenorphine, methadone, ketamine, and lidocaine
Patient Case

• WD is a 36yo M who presents with increased pain around his GJ tube and malnutrition

• Notable medical history
 – Pancreatic cancer s/p whipple 2017, gemcitabine 2018
 – Neuroblastoma s/p nephrectomy as an infant
 – Leydig cell tumor
 – Spinal Schwannomas
 – Gastroparesis s/p GJ one month ago
 – Chronic back pain and opioid dependence
Patient Case cont’d

• Major complaints
 – Pain – chronic back pain, generalized abdominal pain/cramping with concerns for recurrent pancreatic cancer, visceral pain at site of G tube
 – Gastroparesis with nausea and vomiting

• Patient is strict NPO
• NCCN Adult Cancer Pain Guidelines
 – Updated annually with new versions each January

Current Pain Medications

• Hydromorphone PCA:
 – Settings: 0.2 mg/hr, 0.4 mg Q10min
 – 24 hour usage: 400-600 OMEs

• Pain is well controlled on the PCA with pain score of 5-7/10 consistently; patient is also sleeping well with no apparent ADEs

• Now what?
Planning for the Future

• Current goals of care are to discharge home, but patient remains strict NPO and cannot go home on an oral regimen.
Kitchen Sink Time

- Buprenorphine
- Ketamine
- Lidocaine (mexiletine)
- Methadone
How to Approach

- Safety, first and always
- Effective for patient’s type of pain
- What’s left and what’s best (for now)

<table>
<thead>
<tr>
<th></th>
<th>Safety</th>
<th>Effective</th>
<th>Best</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buprenorphine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ketamine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lidocaine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methadone</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Safety: Buprenorphine

- No true contraindications other than allergies
- No dosage adjustments in renal disease
- May consider lower starting doses in severe hepatic disease
Safety: Ketamine

• No true contraindications other than allergies
• No dosage adjustments in renal or hepatic disease
• Caution:
 – Tachycardia, hypertension
 – Head injuries
Safety: Lidocaine

- Do not use in patients with significant cardiovascular disease
- No dosage adjustments in renal disease
- Low and slow in hepatic disease
- Large pharmacokinetic variability...
Safety: Methadone

- Do not use in patients with prolonged QTc, significant cardiovascular disease, or medication adherence issues
- No dosage adjustments in renal or hepatic impairment, but still go low and slow
<table>
<thead>
<tr>
<th>Drug</th>
<th>Safety</th>
<th>Effective</th>
<th>Best</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buprenorphine</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ketamine</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lidocaine</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methadone</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Nociceptive pain
- Effects similar to traditional opioid with lower risk of respiratory depression and side effects

Mechanism
- Partial mu agonist, kappa antagonist, delta agonist, ORL-1 agonist
 - Very high affinity for mu opioid receptors

Effective: Buprenorphine
Don’t Forget Your Receptors

<table>
<thead>
<tr>
<th>Receptor</th>
<th>Agonism</th>
<th>Antagonism</th>
</tr>
</thead>
</table>
| Mu | - Supraspinal analgesia
 - Respiratory depression
 - Euphoria
 - Sedation
 - Decreased GI motility
 - Dependence | Mostly opposing effects |
| Kappa | - Spinal analgesia
 - Sedation
 - Dyspnea
 - Dependence
 - Dysphoria
 - Respiratory depression | - Decreased stress-induced drug seeking behavior
 - Antidepressant |
| Delta | - Psychomimetic
 - Dysphoria | Mostly opposing effects
 - Anxiety |
Pharmacokinetics

• A: about 50% oral bioavailability
 – Naloxone – low sublingual and GI bioavailability with high first pass metabolism

• D: highly protein bound with extensive distribution

• M: liver metabolized, CYP 3A4 substrate

• E: fecal (70%) and renal (30%) elimination
 – Dissociation half-life of 5-6 hours
 – Elimination half-life of 24-42 hours

• Analgesic effect of about 6 hours
 – Formulation dependent
<table>
<thead>
<tr>
<th></th>
<th>Safety</th>
<th>Effective</th>
<th>Best</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buprenorphine</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Ketamine</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lidocaine</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methadone</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Effective: Ketamine

• Nociceptive pain (via opioids) and refractory neuropathic pain

• Mechanism:
 – Non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist with SNRI activity
 – Minor opioid agonism, but likely not clinically relevant
 – Induces dissociative anesthesia
 – Functional and electrophysiological dissociation between the thalamocortical and limbic systems
 – Prevents higher centers from perceiving auditory, visual, or painful stimuli
Pharmacology

• Mechanism:
 – Non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist with SNRI activity
 – Minor opioid agonism, but likely not clinically relevant
 – Induces dissociative anesthesia
 – Functional and electrophysiological dissociation between the thalamocortical and limbic systems
 – Prevents higher centers from perceiving auditory, visual, or painful stimuli
NMDA glutamate receptors are widely present in the CNS

- Play a major role in glutaminergic system
- Glutamine – excitatory neurotransmitter released with noxious peripheral stimuli

Ketamine allosterically binds to NMDA receptor preventing glutamate signaling

NMDA activity – plays a role in neuropathic pain signaling
Pharmacokinetics

• A: oral bioavailability 16%

• D: moderate protein binding and distribution
 – Brain, heart, lungs first, then redistribution

• M: liver metabolism via demethylation

• E: renal elimination of mostly changed drug (no dose changes needed)
 – Half-life of 2 to 3 hours

• Onset and Duration
 – IV within 30 seconds and full effect within 2 minutes lasting up to 60 minutes
Ketamine

<table>
<thead>
<tr>
<th></th>
<th>Safety</th>
<th>Effective</th>
<th>Best</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buprenorphine</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Ketamine</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Lidocaine</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methadone</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
• Nociceptive and neuropathic pain

• Mechanism:
 – Sodium channel blockade

http://hyperphysics.phy-astr.gsu.edu/hbase/Biology/actpot.html
Pharmacokinetics

- A: oral bioavailability 90% (mexiletine)
- D: moderate protein binding and distribution
- M: liver metabolism
- E: biphasic, prolonged in CHF, liver disease, shock, and severe renal disease
 - Usual half-life is 1-2 hours
- Onset and Duration
 - Effects usually seen within 4 hours of initiation
<table>
<thead>
<tr>
<th></th>
<th>Safety</th>
<th>Effective</th>
<th>Best</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buprenorphine</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Ketamine</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Lidocaine</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Methadone</td>
<td>✔️</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Nociceptive and neuropathic pain

Mechanism:

- Mu agonist
 - Kappa and delta agonism to a lesser extent
- NMDA antagonist
- Inhibits the re-uptake of serotonin and norepinephrine

Effective: Methadone
PK: Absorption

- 80% bioavailable after oral administration
- Rapidly absorbed from the GIT
- Peak plasma concentrations reached 2.5-4 hours post-dose
- Rectal bioavailability is approximately 76%

PK: Distribution

- Lipophilic
- 88% plasma protein bound
 - Primarily binds alfa-1 acid glycoprotein
- Vss 1.7-5.3 L/kg in chronic pain patients

PK: Metabolism

- Extensively liver metabolized by N-demethylation to inactive drug
- 3A4 (2B6, 2C8, 2C9, 2C19, 2D6)
- Induces its own metabolism
- Empiric dose reductions survey:
 - 1 – 10%
 - 4 – 25%
 - 1 – 30%
 - 1 – 50%
 - 1 – no reduction

Drug Interactions: Inhibitors

<table>
<thead>
<tr>
<th>Drug</th>
<th>% Methadone Change</th>
<th>Dose Adjustment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluconazole</td>
<td>+35</td>
<td>?</td>
</tr>
<tr>
<td>Fluoxetine</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Fluvoxamine</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Clarithromycin</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Amiodarone</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Amitriptyline</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>
Drug Interactions: Inducers

<table>
<thead>
<tr>
<th>Drug</th>
<th>% Methadone Change</th>
<th>Dose Adjustment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbamazepine</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Glucocorticoids</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Phenytoin</td>
<td>-50</td>
<td>?</td>
</tr>
<tr>
<td>Rifampin</td>
<td>-30-65</td>
<td>?</td>
</tr>
<tr>
<td>Phenobarbital</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Efavirenz</td>
<td>-48</td>
<td>?</td>
</tr>
<tr>
<td>Ritonavir</td>
<td>-36</td>
<td>?</td>
</tr>
</tbody>
</table>
PK: Elimination

• Long and variable elimination half-life
 – Range: 5-130 hours
 – Mean: 20-35 hours
• Low extraction ratio drug
• Fecal, renal, and minor biliary
• Changes in urinary pH affect elimination
 – pH above 6 – renal clearance ~4%
 – pH below 6 – renal clearance ~30%

<table>
<thead>
<tr>
<th>Drug</th>
<th>Safety</th>
<th>Effective</th>
<th>Best</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buprenorphine</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Ketamine</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Lidocaine</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Methadone</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Check Time

<table>
<thead>
<tr>
<th></th>
<th>Safety</th>
<th>Effective</th>
<th>Best</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buprenorphine</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Ketamine</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Lidocaine</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Methadone</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
</tbody>
</table>
• Sublingual and parenteral administration available for now and later
• Would help decrease his opioid related risks
Best (For Now): Ketamine

- Parenteral administration available for now
- Oral administration available for later
- Would help decrease his opioid consumption
Best (For Now): Lidocaine

- Parenteral administration available for now
- Oral (mexiletine) available for later
Best (For Now): Methadone

- Parenteral administration available for now
- Oral administration available for later
- Would help decrease his opioid consumption
So What Did We Do?

- Patient using 26 mg IV hydromorphone via PCA with pain scores not changing 9-10/10

- What do you think we did?

- What would you have done?
Buprenorphine!

- PCA stopped at 0200
- Buprenorphine 1 mg at 0800 Q30Min x 4 doses
- Then buprenorphine 2 mg Q4HRs x 4 doses

(plus some ketorolac)
Not Quite the Kitchen Sink

MOQC Biannual Meeting

January 2020

Michael A. Smith, PharmD, BCPS